Matrices Worksheets 1.4: Finding The Inverse of a 2 x 2 Matrix
Introduction
During the COVID-19 pandemic I created some worksheets based on A Level Maths and Further Maths. I’ve decided to upload these to my blog in case they can be of use.
Finding The Inverse of a 2 x 2 Matrix
- For each of the following matrices:
- Calculate their determinant.
- Find their inverse, if it exists.
\[ \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ \end{pmatrix} \]
\[ \begin{pmatrix} 1 & -1 \\ 6 & 2 \end{pmatrix} \]
\[ \begin{pmatrix} 2 & 0 \\ 3 & -3 \end{pmatrix} \]
\[ \begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \]
\[ \begin{pmatrix} -3 & -1 \\ -2 & 6 \end{pmatrix} \]
\[ \begin{pmatrix} 5 & 7 \\ -4 & 0 \end{pmatrix} \]
For what values of \(k\) does the matrix \[\begin{pmatrix} k & 2k \\ 1 & -k \end{pmatrix} \] have an inverse?
Given the matrices
\[ \text{A} = \begin{pmatrix} 0 & 2 \\ 1 & -6 \end{pmatrix} \] and \[ \text{B} = \begin{pmatrix} -4 & -3 \\ 7 & 4 \end{pmatrix} \] find:
\(\text{A}^{-1}\)
\(\text{B}^{-1}\)
\(\text{A}^{-2}\text{B}\)
\(\text{(AB)}^{-1}\)
\(\text{(BA)}^{-1}\)
By considering the inverse of the matrix \[\begin{pmatrix} a & b \\ c & d \end{pmatrix},\] derive the general formula for the inverse of a 2 x 2 matrix, stating under which condition this result holds.
Prove that for any two invertible matrices A and B, \(\text{(AB)}^{-1} = \text{B}^{-1}\text{A}^{-1}\).
Find the inverse of the general rotation matrix R for a rotation of θ degrees anticlockwise about the origin. \[\text{R} = \begin{pmatrix} \cos{θ} & -\sin{θ} \\ \sin{θ} & \cos{θ} \end{pmatrix}.\] What does the matrix \(\text{R}^{-1}\) represent geometrically.
- Prove that for an invertible 2 x 2 matrix \[\text{A} = \begin{pmatrix}
a & b \\
c & d
\end{pmatrix},\] then
\[ \text{det(A}^{-1}) = \frac{1}{\text{det(A)}}.\]
- Prove that for an invertible 2 x 2 matrix \[\text{A} = \begin{pmatrix}
a & b \\
c & d
\end{pmatrix},\] then
- By considering the fact that for an invertible n x n matrix \(\text{B}\), \[\text{BB}^{-1} =\text{I}\] prove the result in (a) generally for an n x n invertible matrix.
Solutions
1)
2)
3)
4)
5)
6)
7)